

MobilEye Implementation

Jason Hwang (jyh37)
Autonomous Systems Lab – Skynet

Professor Mark Campbell

 2

Table of Contents
I. Introduction

a. MobilEye 560

b. CAN Messages

c. Implementation Overview

II. MCU and Hardware
a. Arduino Due

b. CAN Transceiver/Controller

c. Performance

III. Time Server
a. Time Packet

b. Timing Pulse

IV. Multicasting
a. Routing Schemes

i. Unicast

ii. Broadcast

iii. Multicast

b. Ethernet Shield

c. Ethernet Configurations

V. Results

VI. Conclusion

VII. Code

 3

I. Introduction
The goal of using the MobilEye vision sensor is to detect information about vehicles,

pedestrians, lanes, and signs in front of Skynet to help understand the car’s environment.

For the MobilEye sensor to be implemented into Skynet, the incoming data packets must

be processed quickly and completely and time stamped so that the data is synchronized

with the rest of the Skynet system.

MobilEye 560
The MobilEye 560 is a commercial product that uses computer vision to identify

the vehicle’s surroundings. The sensor uses a single camera to detect obstacles (vehicles,

pedestrians, cyclists), lanes, and signs. The camera unit is mounted on the windshield and

is connected to an EyeWatch display that is placed on the dashboard.

 The unlocked version of MobilEye used by Skynet is capable of outputting vast

amounts of data related to the conditions on the road. The data outputs information such

as the number of obstacles on the road and their positions, the coefficients of lane

parameters, speed limits, etc.

Figure 1 – MobilEye 560 and EyeWatch

 4

CAN Messages
 MobilEye outputs data to Skynet through the CAN protocol. The CAN protocol is

an industry standard used by many automobile companies to relay messages between

various systems within a vehicle. For an example, the car’s headlights, turn signals, and

door locks are all controlled by CAN messages. Similarly, MobilEye uses the CAN

protocol for its own data output. MobilEye uses a CAN header of 11 bits and a baud rate

of 500 kbps. The CAN header contains the ‘message ID’, which specifies what type of

CAN message was just received. Knowing the message ID allows the user to understand

how to dissect the data by following the message protocols stated in the MobilEye

manual (example shown in figure 2). A ‘length’ variable tells the number of bytes of data

in the packet and each packet can have up to eight bytes of data. Upon the Skynet servers

receiving the data packets, the servers will then parse the data according to the message

protocol to extract the information.

Figure 2 – Message Protocol for Message ID 0x739 (Obstacle Data A)

For MobilEye to be implemented into Skynet, a method for processing CAN packets

must be used. Therefore, all hardware and software chosen are compatible with the CAN

protocol.

 5

Implementation Overview

Figure 3 – Implementation Schematic

The implementation for MobilEye consists of:

MobilEye – MobilEye 560 vision sensor outputs data packets using the CAN protocol

CAN Transceiver – converts CAN packets so they are compatible with Arduino Due

Arduino Due – microcontroller unit (MCU) (attached to Ethernet Shield)

Ethernet Shield – provides MCU with ethernet capabilities (attached to Arduino Due)

Timeserver – Skynet’s central timing system, sends out time packets

Pulse – timing pulse to notify MCU’s of incoming time packet, used for synchronization

Network Switch – manages network traffic

Skynet Servers – parses sensor data

 The implementation scheme starts at the MobilEye sensor which outputs data

packets using the CAN protocol. The data packets are then received by the CAN

transceiver, which converts the CAN data packets into a compatible form to be used by

the Arduino Due microcontroller. Within the Arduino Due is a built in CAN controller

which processes the data packets to extract the message ID, length, and data. The

Arduino Due appends the timestamp to each data packet to synchronize each packet with

Skynet and then sends the data packet to the Ethernet Shield. The Ethernet Shield then

 6

multicasts the data packets to the network switch. The network switch finally sends the

data packets to the proper Skynet servers.

 At the same time, the timeserver sends the current time of the Skynet system to

the network switch once every second. The network switch sends the time packets to all

devices connected to the network switch, including the Arduino Due. Before the

timeserver sends out the time, the timeserver firsts sends a pulse to each of the MCU’s.

The pulse is a physical connection that goes directly from the timeserver to each MCU.

The pulse notifies the MCU’s of an incoming time packet for device synchronization.

II. MCU and Hardware
Arduino Due
 The Arduino Due was chosen as the microcontroller (MCU) to implement

MobilEye because of the Due’s fast processing speed (84 MHz clock), relatively low cost

(~$30), ease of use, open source libraries/code, expandable functions (ie. Ethernet

Shield), CAN capabilities, and numerous input/output ports. The Due contains 54 digital

I/O pins and 12 analog inputs, of which all digital pins have interrupt capabilities

(interrupts covered in more depth in Section III: Timeserver). The Due operates on 3.3V

so all inputs into the Due should not be higher than 3.3V or it may damage the board. To

power the Due, it is recommended to supply the board with 7-12VDC. The Due used for

MobilEye receives 12V from the RJ45 cable containing the timeserver pulse. Since the

timeserver supplies 24V, voltage dividers were used to obtain 12V from the 24V.

Figure 4 – Arduino Due

 7

CAN Transceiver/Controller
 A CAN transceiver is a chip which converts the raw CAN_H (CAN High) and

CAN_L (CAN Low) signals from the CAN source into a form that is compatible to be

read with the CAN controller. Specifically, the CAN transceiver converts the differential

CAN_H and CAN_L signals into a TX signal. A CAN controller receives the TX signal,

sends a RX signal back to the transceiver, and then analyzes the TX/RX signals. The

CAN controller’s main purpose is to extract the message ID, length, and data from the

TX/RX signals. Often times, the TX of the transceiver goes to the RX of the controller

and the RX of the transceiver goes to the TX of the controller. A general hardware

overview for implementing CAN is seen in figure 5.

Figure 5 – General CAN Implementation

 For the MobilEye’s implementation, the MobilEye outputs the CAN_H and

CAN_L signals via a D-Sub connector. The D-Sub is connected to a 3.3V CAN Bus

Breakout Board which has an on-board MCP2551 transceiver. The breakout board then

outputs the TX and RX to the Arduino Due. The Arduino Due has a built in CAN

controller which provides the message ID, length, and data directly to the Due’s

processor. Note that the TX/RX signals are not crossed in this implementation. The TX

from the breakout board goes to the TX on the Due and the RX from the breakout board

goes to the RX on the Due. The MobilEye’s CAN implementation is seen in figure 6.

Figure 6 – MobilEye CAN Implementation

 8

*Note that the default Arduino library does not support the protocols for the built

in CAN controller. The CAN controller library for the Due needs to be downloaded

from: https://github.com/collin80/due_can

Performance
 Upon the Arduino Due receiving a data packet from the transceiver, it takes 10-18

µs for the data packet to be ready to be sent to the network switch. Within this 10-18 µs,

the controller processes the data and extracts the message ID, length, and data bytes, the

timestamp is appended to the data packet, and the data packet is packaged into a 15 byte

array. Since MobilEye data packets come in at a rate between 170-250 µs, there is

sufficient time to process the data since it only takes 10-18 µs to process the packets and

thus no packets are lost. *Performance was slightly improved by changing the SPI

clock settings in Ethernet3-master>src>utility>w5500.cpp to 84000000

 Prior to using the Arduino Due, an Arduino Ethernet was used to implement the

MobilEye. The Arduino Ethernet lost half the data packets since it took over 400 µs to

process a data packet. This is because the Arduino Ethernet has a lower clock speed (16

MHz) and doesn’t have a built in CAN controller. The Arduino Ethernet required an

external controller, which used Serial Peripheral Interface (SPI) to transmit the message

ID, length, and data to the Arduino Ethernet. Since SPI required a few hundred µs to

transmit the information, half the incoming MobilEye packets were lost.

III. Time Server
 One of the main criteria for implementing MobilEye is to timestamp the data

packets so they are synchronized with the rest of the Skynet system. This way, the Skynet

servers know exactly when an event occurred once the data packet has been processed.

For example, if MobilEye detects a pedestrian in front of the car, by time-stamping the

data packet, Skynet knows the exact time when there was a pedestrian present. To

synchronize MobilEye’s data packets with Skynet’s time, the Arduino Due must be able

to obtain time packets from Skynet’s timeserver.

 The timeserver is located in the back of Skynet and the time is kept with an HC12

microcontroller.

 9

Figure 7 – Timeserver (HC12 MCU)

The timeserver sends Skynet’s time to each device by sending time packets to the

network switch. Therefore, it is essential for every MCU to have ethernet capabilities. In

the case of the Arduino Due, the Ethernet Shield provides ethernet functionality and

allows for both UDP and TCP protocols (timeserver uses UDP). The timeserver has a

source IP address of 192.168.1.2 and sends time packets from port 30 on the timeserver

to port 30 on the corresponding MCU. The time packets are broadcasted once every

second, meaning that the time packets are sent to all devices on the network switch. The

destination IP for broadcasting is 255.255.255.255 and is further explained in section IV.

Time Packet
 Each time packet is composed of three fields: type, seconds and ticks. The type is

one byte and represents the type of time packet that is sent. If the time packet was

broadcasted automatically every second, the type is 0. If a time packet was requested by

an MCU, the type is 1 (please refer to Adam Shapiro’s documentation of the time server

for more information).

The seconds keeps track of how many seconds have elapsed since Skynet has

been operating. The ticks keep track of time more precisely where one tick represents 100

µs and is the smallest unit of time. Since the timeserver sends a time packet on the

second, each time packet has a tick value of 0. Therefore, each MCU keeps track of the

number of ticks that have elapsed using the MCU’s own timer.

Figure 8 – Time Packet

 10

Timing Pulse
 To notify each MCU of when a time packet is sent so that the MCU can quickly

update it’s time to Skynet’s time and minimize time delay, a timing pulse is used. The

timing pulse is a physical signal that is connected to each device and the pulse is sent out

once every second (1 Hz). The pulse begins 2 ms (20 ticks) prior to each elapsed second

(ie. pulse sent at second = #, ticks = 9,980). Once the pulse ends 2 ms later, the time

packet is broadcasted (ie. time packet broadcasted at second = #+1, ticks = 0).

The pulse is a differential pulse that is active low (ie. normally high and goes low

once every second). However, the Arduino Due analyzes only one end of the differential

pulse and is seen in figure 9.

Figure 9 – Timing Pulse

 Since the pulse the Arduino Due sees is active high, the Due waits for the pulse to

drop low before checking to see if a time packet had been received. Since the pulse is

done in hardware, interrupts are used to tell the MCU when the pulse has gone low. The

pulse is connected to digital pin 2 on the Due and an interrupt is attached to the pin. The

interrupt service routine (ISR) connected to pin 2 is called whenever the pulse changes

states. Within the ISR, a variable is incremented each time the pulse changes states.

Every two state changes means that the pulse has gone low and a new time packet is

 11

ready (the first state change means the pulse has gone from low to high, the second state

change means the pulse has gone from high to low).

Ideally, the ISR should be triggered whenever the state goes from high to low.

However, this event on the Due was triggered incorrectly so the more complicated

procedure mentioned above using a state change as a trigger was used.

The pulse is obtained directly from the timeserver by splicing the existing

timeserver’s output. The timeserver output includes +24V, GND, Pulse+, and Pulse-. The

spliced connection uses an RJ45 cable to carry the signals to the front of the car where

the Arduino Dues are located. The wire provides both the timing pulse as well as power

to the Arduino Dues. The Arduino Due uses Pulse- (figure 9) only and ignores Pulse+.

IV. Multicasting
 Multicasting is an essential part in implementing the MobilEye since all sensors

on the Skynet network utilize multicasting to send their data to the proper servers. To

understand multicasting, it is helpful to also understand the two other main routing

schemes: unicasting and broadcasting.

Routing Schemes

Unicast - data packets are sent to only one IP address destination and is a one-to-one

routing scheme

Figure 10 - Unicast

 12

Broadcast – data packets are sent to all devices on the network (ie. all devices connected

to the network switch), broadcasting uses a special IP address 255.255.255.255

Figure 11 – Broadcast

Multicast – data packets are sent to a multicast group where multiple clients can be

subscribed to the multicast group. Only clients subscribed to the multicast group will

receive the data packets. Data packets are sent out only once from the source.

Multicasting IP addresses range between 224.0.0.0 through 239.255.255.255

Figure 12 – Multicast

The multicast group IP address assigned to MobilEye is 239.132.1.45 and the data

packets are sent to port 30045 on the Skynet servers. Therefore, any Skynet server

subscribed to 239.132.1.45 will receive MobilEye data packets on port 30045.

*Using multicasting requires the library from: https://github.com/sstaub/Ethernet3

 13

Ethernet Shield
 To provide the Arduino Ethernet with ethernet capabilities to receive time packets

and to multicast MobilEye data packets, an Ethernet Shield was used. The Ethernet

Shield is capable of up to 8 simultaneous connections where each connection is called a

‘socket’ (IP address + port number). For the MobilEye implementation, two sockets are

used, one for the broadcasted time packets and one for multicasting MobilEye packets.

The Ethernet Shield is powered with 5V and uses a Wiznet W5500 ethernet controller

chip. The Ethernet Shield communicates with the Arduino Due through SPI.

Figure 13 – Ethernet Shield v2

Ethernet Configurations
 The software required to implement multicasting requires configuring all ethernet

fields properly. The unique IP address assigned to the MobilEye’s Ethernet Shield is

192.168.1.85 and should not be used by any other device on the subnet. The MAC

address of the Ethernet Shield is {0x90, 0xA2, 0xDA, 0x10, 0xE9, 0xF6} and is written

on a sticker attached to the shield. The local port on the Arduino Due is port 30

(incoming time packets) and the destination port is 30045 (outgoing MobilEye packets).

The IP address of the timeserver is 192.168.1.2 and the IP address for multicasting

MobilEye packets is 239.132.1.45.

 14

V. Results

Figure 14 – Results

 Figure 14 shows the data packets received from the Skynet servers using the

implementation method described in this report. The results show that the timestamp

work properly and that the CAN transceiver/controller correctly process the data from the

MobilEye into a form that can be deciphered using the CAN message protocols located in

 15

the MobilEye manual. Since the results were captured with Skynet parked in Ward under

a controlled setting, the message ID’s in figure 14 agree with the expected message ID’s

for when Skynet is parked in Ward. Since all of the expected message ID’s were

displayed, the packets were captured completely and no packets were lost.

SensorView Testing
 Using Skynet’s testing software SensorView, the parsed MobilEye data was able

to display objects around Skynet on SensorView. SensorView displayed the object’s type

(ie. vehicle/pedestrian), relative position to the car, the relative speed of the object, the

object’s status (ie. moving/standing), and the age of the object. As Skynet drives on the

road, SensorView is able to display the MobilEye’s data live.

Figure 15 – SensorView with MobilEye Displayed

 Observing figure 15, the rectangular box in the center is Skynet and the orange

boxes to the right of Skynet are the objects MobilEye detects. Comparing MobilEye’s

data with Ibeo data shows that objects directly in front of Skynet are the most accurate

but objects at angles or moving too quickly are not very accurate. More testing should be

done to determine which exact scenarios produces what types of inaccuracies.

 16

VI. Conclusion
 The implementation scheme discussed in this report successfully integrated

MobilEye into the Skynet system. The MobilEye data packets were captured completely,

quickly, and accurately. Analyzing MobilEye’s performance using SensorView, it was

determined that MobilEye is excellent at extracting a lot of information about objects that

are directly in front of Skynet that are moving at a moderate pace. Objects at an angle and

moving too quickly produced results that did not match with Ibeo data and were

significantly delayed. Therefore, the current performance of MobilEye using the

implementation scheme discussed excels in environments such as highways but may lack

in performance in heavily dense and quick paced environments such as an urban street in

a city.

Areas to look into to improve the performance of the implementation scheme may

include reducing the time it takes for the Ethernet Shield to send data to the network

switch over SPI and reanalyzing the time synchronization to confirm it is accurate and

has no time delay.

Overall, MobilEye provides an extra trove of information regarding the

environment around Skynet and may have the most potential when paired with

information from other sensors.

 17

VII. Code
Please contact jyh37@cornell.edu for the code and corresponding libraries

#include "variant.h"
#include <due_can.h>
#include <SPI.h>
#include <Ethernet3.h>
#include <EthernetUdp3.h>

//[seconds msb][seconds lsb][ticks msb][ticks lsb][id msb][id
lsb][length][b0][b1][b2][b3][b4][b5][b6][b7]
byte packet[15];

unsigned int seconds; byte seconds_msb; byte seconds_lsb;
unsigned int ticks; byte ticks_msb; byte ticks_lsb;

unsigned long id;
byte id_msb; byte id_lsb;

unsigned int time_ref; //Arduino reference time upon time sync from timeserver (in
microseconds)

int begin_flag = 0;
int timer = 0;

//Arduino Due network info
byte mac[] = {0x90, 0xA2, 0xDA, 0x10, 0xE9, 0xF6}; //from ethernet shield sticker
(any MAC works)
IPAddress ip(192, 168, 1, 85); //assign an IP that's not currently used by Skynet
IPAddress multiIP(239, 132, 1, 45); //NewMobilEye multicast IP

unsigned int localPort = 30; //Arduino port to listen on (timeserver sends to port 30 of
Arduino)
unsigned int multiPort = 30045; //NewMobiLEye multicast port

EthernetUDP UdpRX;
EthernetUDP UdpTX;

byte receivePacket[5]; //[Type][Seconds MSB][Seconds LSB][Ticks MSB][Ticks LSB]

const int interruptPin = 2; //pulse- from timeserver
int i = 0; //keeps track of status on pulse-

int rate; //messages/second

int start;

 18

int finish;
//
void setup(){
 Can0.begin(CAN_BPS_500K);

 int filter;
 for (int filter = 3; filter < 7; filter++){
 Can0.setRXFilter(filter, 0, 0, false);
 }

 Ethernet.begin(mac, ip);

 UdpRX.begin(localPort); //timeserver (socket 0)
 UdpTX.beginMulticast(multiIP, multiPort); //multicast (socket 1)

 pinMode(interruptPin, INPUT);
 attachInterrupt(interruptPin, pulseISR, CHANGE); //UDP sent from timeserver when
pulse is turned off
 //ideally use FALLING, however FALLING doesn't
work as it should
 //Serial.begin(115200);
}

void loop(){
 //CAN
 CAN_FRAME incoming;

 if(begin_flag == 1){
 if (Can0.available() > 0) {
 Can0.read(incoming);
 packageFrame(incoming);
 //printPacket();
 multiCast();
 rate++;
 }
 }

 //TIMESERVER
 if(i == 2){ //i=0 when low, i=1 on rising, i=2 on falling
 time_ref = micros();

 int packetSize = UdpRX.parsePacket(); //205 us

 if (packetSize){
 UdpRX.read(receivePacket, packetSize);

 19

 seconds_msb = receivePacket[1]; //only seconds changes, ticks is always 0
 seconds_lsb = receivePacket[2];

 unsigned int temp;
 temp = seconds_msb << 8;
 seconds = temp | seconds_lsb;

 begin_flag = 1; //start program once timestamp received

 //Serial.print("Rate: "); Serial.println(rate);
 rate = 0;
 }
 i=0;
 }
}

void packageFrame(CAN_FRAME &frame){
//[seconds msb][seconds lsb][ticks msb][ticks lsb][id msb][id
lsb][length][b0][b1][b2][b3][b4][b5][b6][b7]
 getTicks();

 id = frame.id;
 id_msb = id >> 8;
 id_lsb = id & 255;

 //package packet
 packet[0] = seconds_msb;
 packet[1] = seconds_lsb;
 packet[2] = ticks_msb;
 packet[3] = ticks_lsb;
 packet[4] = id_msb;
 packet[5] = id_lsb;
 packet[6] = frame.length;

 for (int i=0; i<frame.length; i++){
 packet[i+7] = frame.data.bytes[i];
 }
}

void printPacket(){
//[seconds msb][seconds lsb][ticks msb][ticks lsb][id msb][id
lsb][length][b0][b1][b2][b3][b4][b5][b6][b7]
 unsigned int temp_seconds, temp_ticks, temp_id;
 temp_seconds = packet[0] << 8;
 temp_seconds = temp_seconds | packet[1];
 temp_ticks = packet[2] << 8;

 20

 temp_ticks = temp_ticks | packet[3];
 temp_id = packet[4] << 8;
 temp_id = temp_id | packet[5];

 Serial.print("Seconds: "); Serial.print(temp_seconds);
 Serial.print(" Ticks: "); Serial.print(temp_ticks);
 Serial.print(" ID: "); Serial.print(temp_id);
 Serial.print(" Len: "); Serial.print(packet[6]);
 Serial.print(" Data: ");
 for(int i=0; i<packet[6]; i++){
 Serial.print(packet[i+7]); Serial.print(" ");
 }
 Serial.println();
}

void multiCast(){
 int x;
 //start = micros();

 UdpTX.beginPacket(multiIP, multiPort); //47 us
 UdpTX.write(packet, 15); //145 us
 UdpTX.endPacket(); //54 us

 //finish = micros();
 //Serial.println(finish-start);
 //Serial.println(x);
}

void getTicks(){
 ticks = (micros() - time_ref)/100;

 ticks_msb = ticks >> 8;
 ticks_lsb = ticks & 255;
}

void pulseISR(){
 i++;
}

/*NOTES*/
//10-18 microseconds from getting CAN message to being ready to send it out

